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ABSTRACT

Transverse bend strength and elastic modulus determinations made of fine-
grained (1 to 2 micron)l dense, pure A1 2 0 3 and MgO specimens as a function
of temperature (up to 1350 C) revealed values higher than those obtained by
other investigators for these oxides in more porous form and of larger grain
sizes. Studies of the grain growth kinetics of alumina and magnesia were con-
ducted in order to obtain information to enable preparation of specimens with
desired larger grain sizes for subsequent thermomechanical testing. Based on
observations of the fracture modes exhibited by alumina and magnesia as a
function of temperature, it was suggested that anelastic deformation or possible
plastic flow in the so-called "equicohesive" temperature range may influence
the mode of fracture. By analogy with findings in metals systems, it was
hypothesized that the apparent transition from transgranular to intergranular
fracture might occur below some critical stress rather than above some critical
temperature.
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I. INTRODUCTION

This is the second quarterly progress report on microstructure studies of
polycrystalline refractory oxides. The overall objective of this project is to
determine the effects of microstructure on the elevated-temperature, mechan-
ical-strength properties of selected ceramic-oxide refractory materials.
Primary emphasis is currently being placed on the effect of grain size on the
elevated-temperature transverse bend strength and elastic modulus of pure,
single-phase alumina and magnesia.

During the period covered by this report, transverse bend strength and elastic
modulus determinations were made on fine-grained (1- to 2-micron) dense,
pure A1203 and MgO as a function of temperature. In addition, preliminary
studies were conducted to determine the kinetics of grain growth of these mate-
rials in order to obtain the desired larger grain sizes for this investigation.
Finally, some observations were made of the modes of fracture, exhibited by
the fine-grained alumina and magnesia as a function of temperature. The
influence of anelastic deformation or possible plastic flow on the mode of
fracture in the "equicohesive" temperature range has been discussed.

In this report, the bend strength and elastic modulus values obtained for fine-
grained alumina and magnesia are compared with earlier data on these mate-
rials reported by Schwartz 1 and Coble and Kingery 2 . It is recognized that
several other investigators (see, for example, references 3 through 6) have
also studied the room and elevated temperature bend strength and elastic mod-
ulus behavior of these materials with varying microstructures, purities, test-
ing conditions, etc. However, data were not available for simultaneous meas-

urements of strength and modulus on the same, pure, highly dense specimens
as a function of grain size and temperature. Thus, the data of Schwartz and
Coble and Kingery proved to be most suitable for comparison with the present
results.

Possible effects due to factors such as surface conditions continue
to be under close surveillance during this study. For example, surface-
roughness measurements made on various A1 2 0 3 and MgO specimens before
and after elevated-temperature testing have revealed no measurable changes in

surface condition during testing.

Future plans call for completing the bend strength and elastic modulus deter-

minations as a function of temperature of alumina and magnesia specimens
which have received thermal treatments to cause varying amounts of grain
growth to occur.
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II. GRAIN GROWTH STUDIES

In order to obtain the desired grain sizes for this investigation, several pre-
liminary studies were made to determine the kinetics of grain growth of the
alumina and magnesia materials. Figure I plots log grain size versus log
time for the grain growth of A1 2 0 3 and MgO at various temperatures. The
grain-size determinations were made with an optical microscope using a filar
eyepiece. In the early stages of grain growth, the grain sizes were at the
limit of resolution of the microscope and considerable error resulted from an
inability to resolve small individual grains. Accurate determinations of the
smaller grain sizes are now being made from electron-microscope replicas of
the specimens. The curves shown in figure 1 are still useful in determining
the time and temperature to obtain a larger grain size. Specimens are now
being heat-treated to obtain the larger grain sizes for testing. Examples of
the microstructures obtained during grain growth of A1 2 0 3 and MgO are shown
in figures 2 and 3, respectively.

The rather slow grain growth rate obtained in Al 2 0 3 has led to efforts to
enhance the growth by heating in a hydrogen atmosphere with a subsequent
treatment in air. These experiments are now being carried out.
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III. MECHANICAL PROPERTIES DETERMINATIONS

The initial tests of elastic modulus in transverse bending yielded erratic re-
sults. It was found that the correction for apparatus deflective at the test
temperature changed in an unpredictable manner with each application of the
load, due to thermal and stress effects on the apparatus parts. This problem
was eliminated by modifying the apparatus so that the deflection-sensing
instrument (linear variable differential transformer) measured only specimen
deflection with respect to the lower knife edges, eliminating the need of correct-
ing for apparatus deflection.

Figure 4 shows typical load-deflection curves obtained for transverse bending
of fine-grained (1- to 2-micron) A 1203 and MgO at various test temperatures.
Elastic modulus and modulus of rupture values were calculated with the con-

ventional beam-deflection formulas in four-point loading:

F _ (,12 _ ,,a 2

F b .1 bd-

3Pa
Ot.b. - bd 2

where

P - load, pounds

= span, inches

b = specimen width, inches

d = specimen depth, inches

y = specimen deflection, inches

a = distance from point of load to point of reaction, inches.

The ratio P/y was determined from the linear portion of the load-deflection
curve. The elastic modulus and modulus of rupture of fine-grained A1203 and
MgO are shown as a function of test temperature in figures 5 and 6, respec-
tively. Also plotted for comparison are the data of Schwartzl and Coble and
Kingery2 . The curves of elastic modulus are in general agreement with the
trend of the data presented by the above investigators. Both the alumina and
magnesia exhibited higher elastic rnoduli and showed stronger temperature
dependence between 30 and 400°C and between 700 and 1000°C than the mate-
rials used by Schwartz and Coble. It is not yet clear whether this effect was
due principally to a decreased grain size or a decrease in porosity. Coble's



alumina had a grain size of 25 microns and a minimum of 10 percent porosity.
The alumina used by Schwartz had 4 percent porosity and the magnesia 11 per-
cent porosity. The grain size of Schwartz's materials was not known.

While several other investigators have studied microstructure effects on the
elevated-temperature mechanical properties of refractory oxides, 3- 6 the data
of Schwartz and Coble and Kingery proved to be most suitable for comparison
with the present results.

Comparison of the transverse bend strengths of A 1203 and MgO with those of
Schwartz showed a significant increase in strength which was probably due to
a combination of higher density and smaller grain size in the present materials.
However, an exact quantitative comparison of the strength values is not justi-
fied since the specimen cross section and gage lengths used by Schwartz differed
for those used in the present investigation.

The large degree of scatter in the reported data was principally due to differ-
ences in fabrication conditions, which were initially varied to achieve optimum
density, grain size, and strength in the specimens. Specimens fabricated
under the same conditions of temperature, pressure, and time exhibited rel-
atively little scatter in mechanical properties. Specimens fabricated under
slightly different conditions, e.g. , relatively higher hot-pressing temperature
but for shorter time, although having the same apparent density and grain
size, exhibited significant differences in transverse bend strength and elastic
modulus. It is not, at present, understood how these variations in fabrication
conditions affect the mechanical properties. Subsequent specimens for this
investigation, approximately 400 of alumina and 300 of magnesia, were fab-
ricated under identical conditions. Testing of specimens having a grain size
of approximately 50 microns is now being carried out.

Testing of surface conditions of the specimens before and after high-temperature
mechanical testing was accomplished by running surface-roughness tests on a
'alysurf machine. The average deviation from a reference centerline (center-
line average, CLA) was taken as the measure of surface condition. No change
was found to occur in the surface conditions of the specimens during testing.
The average surface roughness was 14 to 22 it inches.
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IV. OBSERVATIONS ON FRACTURE MODES

Typical fracture surfaces exhibited by A1 2 0 3 and MgO specimens broken at
various test temperatures are shown in figure 7. The alumina specimens
exhibited very rough and irregular fracture surfaces up to 1200*C and magne-
sia up to 700C. Specimens fractured at room temperature frequently broke
into three or four pieces in the local region of the fracture. At higher tem-
peratures, the fractures became smooth and regular in appearance as though
sliced normal to the tensile axis.

Figures 8 and 9 are electron fractographs of the fractured surfaces of several
A1203 and MgO specimens. These fractographs revealed a combination of
intergranular and transgranular fracture in both A1 2 0 3 and MgO. The principal
mode of fracture in A1 2 0 3 at test temperatures up to 1000°C and in MgO up to
700*C appeared to be transgranular. Intergranular fracture was also observed
in the microstructure in this temperature range. Fractographs of specimens
tested at higher temperatures revealed fracture to be predominantly inter-
granular. Fracture in A1 2 0 3 specimens tested at 1350*C and in MgO specimens
tested at 1200°C appeared to be entirely intergranular.

These observations indicated that the change in macroscopic fracture charac-
teristics exhibited in A 1203 and MgO over the so-called "equicohesive" tem-
perature range (see, for example, reference 7) results from an increase in the
ratio of intergranular to transgranular fracture with increasing test tempera-
ture.

It is of interest to note that it is in these temperature ranges that the specimens
begin to exhibit yielding and a nonlinear load-deflection behavior prior to frac-
ture. It is suggested that this anelastic deformation or possible plastic flow
may influence the mode of fracture of these materials. Strain damage in and
about the grain-boundary region might lead to intergranular fracture. Chang
and Grant 8 found that stress concentrations at the junction of grains where
grain-boundary sliding had occurred often resulted in the formation of cracks.
They found that cracks spread from one triple point to another along a more or
less direct path in the plane of the boundary. McLean, 9-12 in a series of
unique experiments showed that creep deformation in polycrystalline metal
aggregates occurred by means of migration of dislocations (resulting in slip
and subboundary formation) and by means of grain-boundary sliding. Under a
given stress, the ratio of the fraction of creep strain arising from grain-

boundary shearing to total creep strain ( b remained essentially constant.

Et
Fhis ratio was found to increase as the stress decreased. Using McLean's
technique on creep in polycrystalline aluminum, Fazan, Sherby, and Dorn 1 3

-11-



Eg.b.

confirmed McLean's observations and showed that the ratio for a givenEt

stress was independent of temperature. As suggested by Dorn, 14 these re-
sults indicated that grain-boundary shearing might be attributed to localized
crystallographic mechanisms of deformation in the region of the grain boundary
rather than a process such as viscous shearing. Since the strain arising from
grain-boundary shearing is a function of the total strain for a given stress,
independent of temperature, the localized strain damage in and around the
grain-boundary region such as might lead to intergranular fracture should also
depend on the total strain independent of temperature. McLean's data which

Eg.b.
showed that the ratio increases with decreasing stress suggests that

Et

the strain damage becomes more and more concentrated in the vicinity of the
grain boundary as the stress is decreased.

While similar observations of structural changes attending deformation in fully
dense polycrystalline refractory oxides have not been made, it is reasonable
to assume that the same relationships might be evident in these materials.
Such observations in these materials would indicate that the apparent transition
from transgranular to intergranular fracture might occur below some critical
stress rather than above some critical temperature.

A complimentary study of phenomenological and structural changes attending
creep deformation in fully dense MgO and A1203 would elucidate possible
relationships between deformation, microstructure, and mechanical properties
of refractory oxides.
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V. FUTURE WORK

The necessary specimens of fine-grained, dense, pure A1 2 0 3 and MgO to
cover the desired larger grain-size ranges and testing temperatures have been
fabricated and machined. Subsequent thermal treatments are being employed
to achieve the larger grain sizes up to 300 to 500 microns. During the re-
mainder of the project, it is planned to complete the strength and modulus
determinations of these larger grain-size specimens as a function of tempera-
ture. Testing of specimens having a grain size of approximately 50 microns
is now in progress.
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